1.4 UNITA' SI DERIVATE

Le unità di misura derivate in modo coerente dalle unità SI di base si ottengono mediante semplici operazioni aritmetiche a partire dalle unità di misura SI di base.

Nelle tabelle seguenti sono riportate, per le varie grandezze, le unità di misura derivate dotate di nome proprio.

Unità derivata SI di temperatura nel caso della temperatura Celsius

Grandezza	Unit	à	Conversione	
	Nome	Simbolo	Conversione	
Temperatura Celsius	grado Celsius	C	$t(^{\circ}C) = T(K) - 273,15K$	

Angoli

Grandezza	Uı	nità	Espressione		
	Nome	Simbolo	in unità SI di base	OIML D2 2007 (E)	
Angolo piano	radiante	rad	$m \cdot m^{-1}$	2.2.2	
Angolo solido	steradiante	sr	$m^2 \cdot m^{-2}$	2.2.3	

2.2.2 Il **radiante** è l'angolo piano compreso tra due raggi di un cerchio i quali delimitano, sulla circonferenza del cerchio, un arco di lunghezza pari a quella del raggio.

$$1 \cdot rad = \frac{1 \cdot m}{1 \cdot m} = 1$$

2.2.3 Lo **steradiante** è l'angolo solido di un cono che, avendo il vertice al centro di una sfera, delimita sulla superficie di questa un'area pari a quella di un quadrato il cui lato ha una lunghezza pari al raggio della sfera.

$$1 \cdot sr = \frac{1 \cdot m^2}{1 \cdot m^2} = 1$$

Grandezze definite in meccanica

Grandezza	ι	Jnità	Espressione in unità di base o	Definizione OIML D2 2007 (E)
	Nome	Simbolo	altre unità SI	
Frequenza	hertz	Hz	$1 \text{ Hz} = 1 \text{ s}^{-1}$	2.2.7
Forza	newton	N	$1 \text{ N} = 1 \text{ kg m s}^{-2}$	2.3.5
Pressione,tensione	pascal	Pa	1 Pa = 1 N m ⁻²	2.3.7
Energia ,lavoro, quantità di calore	joule	J	1 J = 1 N m	2.3.10
Potenza, flusso energetico	watt	W	1 W = 1 J s ⁻¹	2.3.11

2.2.7 L' hertz è la frequenza di un fenomeno periodico il cui periodo è di un secondo.

$$1 \cdot Hz = 1 \cdot s^{-1}$$

2.3.5 Il **newton** è la forza che fornisce alla massa di 1 chilogrammo l'accelerazione di 1 metro al secondo ogni secondo.

$$1 \cdot N = 1 \cdot kg \cdot 1 \frac{m}{s^2}$$

2.3.7 Il **pascal** è la pressione uniforme che una forza complessiva di 1 newton esercita, perpendicolarmente, su una superficie piana di 1 metro quadrato. E' anche la tensione uniforme che una forza complessiva di 1 newton esercita, perpendicolarmente, su una superficie piana di 1 metro quadrato

$$1 \cdot Pa = \frac{1 \cdot N}{1 \cdot m^2}$$

2.3.10 Il **joule** è il lavoro fatto dalla forza di 1 newton che sposta il suo punto di applicazione di 1 metro nella direzione della forza.

$$1 \cdot J = 1 \cdot N \cdot 1 \cdot m$$

2.3.11 Il watt è la potenza che fornisce l'energia di 1 joule in un secondo.

$$1 \cdot W = \frac{1 \cdot J}{1 \cdot s}$$

Grandezze definite in elettromagnetismo

Grandezza	Unità		Espressione in unità di base o altre unità	Definizione OIML D2
Grandezza	Nome	Simbolo	SI	2007 (E)
Quantità di elettricità, carica elettrica	coulomb	С	1 C = 1 s A	2.5.2
Differenza di potenziale elettrico, f.e.m	volt	V	1 V = 1 W A ⁻¹	2.5.3
Resistenza elettrica	ohm	Ω	$1 \Omega = 1 V A^{-1}$	2.5.5
Conduttanza	siemens	S	$1 \text{ S} = 1 \Omega^{-1} = 1 \text{ A V}^{-1}$	2.5.6
Capacità elettrica	farad	F	1 F = 1 C V ⁻¹	2.5.7
Flusso d'induzione magnetica	weber	Wb	1 Wb = 1 V s	2.5.9
Induzione magnetica	tesla	Т	1 T = 1 Wb m ⁻²	2.5.10
Induttanza	henry	Н	1 H = 1 Wb A ⁻¹	2.5.8

2.5.2 Il **coulomb** è la quantità di elettricità trasportata in 1 secondo dalla corrente di 1 ampere.

$$1 \cdot C = 1 \cdot A \cdot 1 \cdot s$$

2.5.3 Il **volt** è la differenza di potenziale tra due punti di un filo conduttore quando, transitando una corrente costante di 1 ampere, la potenza dissipata tra questi punti è uguale ad 1 watt.

$$1 \cdot V = \frac{1 \cdot W}{1 \cdot A}$$

2.5.5 L'ohm è la resistenza elettrica tra due punti di un filo conduttore quando una differenza di potenziale costante di 1 volt, applicata a questi punti, produce nel conduttore una corrente di un ampere e non essendo, il conduttore, sede di alcuna forza elettromotrice.

$$1 \cdot \Omega = \frac{1 \cdot V}{1 \cdot A}$$

2.5.6 Il **siemens** è la conduttanza di un conduttore con la resistenza elettrica di 1 ohm.

$$1 \cdot S = 1 \cdot \Omega^{-1}$$

2.5.7 Il **farad** è la capacità elettrica di un condensatore tra le superfici del quale c'è la differenza di potenziale di 1 volt quando è caricato da una quantità di elettricità di 1 coulomb.

$$1 \cdot F = \frac{1 \cdot C}{1 \cdot V}$$

2.5.9 Il weber è il flusso d'induzione magnetica che in una spira produrrebbe una forza elettromotrice di 1 volt se fosse ridotto uniformemente a zero in un secondo.

$$1 \cdot Wb = 1 \cdot V \cdot 1 \cdot s$$

2.5.10 Il **tesla** è la densità del flusso d'induzione magnetica prodotto entro una superficie di 1 metro quadrato da un flusso d'induzione magnetica uniforme di 1 weber e perpendicolare a questa superficie.

$$1 \cdot T = \frac{1 \cdot Wb}{1 \cdot m^2}$$

2.5.8 L' henry è l'induttanza di un circuito chiuso nel quale è prodotta la forza elettromotrice di 1 volt quando la corrente elettrica nel circuito varia uniformemente ad 1 ampere al secondo.

$$1 \cdot H = \frac{1 \cdot V \cdot 1 \cdot s}{1 \cdot A}$$

Grandezze definite in fotometria

Grandezza	Ur	nità	Espressione in altre unità SI	Definizione OIML D2 2007 (E)
	Nome	Simbolo		
Flusso luminoso	lumen	lm	1 lm = 1 cd sr	2.7.4
Illuminamento	lux	lx	$1 \text{ lx} = 1 \text{ lm m}^{-2}$	2.7.5

2.7.4 Il **lumen** è il flusso luminoso emesso in una unità di angolo solido di 1 steradiante da una sorgente puntiforme uniforme di intensità luminosa di una candela.

$$1 \cdot lm = 1 \cdot cd \cdot 1 \cdot sr$$

2.7.5 Il **lux** è l'illuminamento di una superficie ricevente un flusso luminoso di 1 lumen, uniformemente distribuito su 1 metro quadrato della superficie

$$1 \cdot lx = \frac{1 \cdot lm}{1 \cdot m^2}$$

Grandezze definite nelle radiazioni ionizzanti

Grandezza	Uı	nità	Espressione in altre unità	Definizione OIML D2 2007 (E)
Grandezza	Nome	Simbolo	SI	
Attività (di un radionuclide)	becquerel	Bq	1 Bq = 1 s ⁻¹	2.8.1
Dose assorbita, kerma	gray	Gy	1 Gy = 1 J kg ⁻¹	2.8.2
Equivalente di dose	sievert	Sv	1 Sv = 1 J kg ⁻¹	2.8.3

2.8.1 Il **becquerel** è l'attività di una sorgente radioattiva nella quale il rapporto tra il valore atteso di un numero di transizioni nucleari spontanee, o transizioni isomeriche, e l'intervallo di tempo in cui questi transizioni hanno luogo tende al limite 1 / s.

$$1 \cdot Bq = \frac{1}{1 \cdot s}$$

2.8.2 Il **gray** è la dose assorbita, o l'energia cinetica rilasciata nella materia Kinetic Energy Released in MAtter (kerma), in un elemento di materia della massa di 1 chilogrammo al quale è trasmessa l'energia di 1 joule tramite radiazioni ionizzanti (dose assorbita), o nel quale elemento la somma delle energie cinetiche iniziali di 1 joule è liberata da particelle ionizzanti cariche (kerma). Ciascun processo avviene in condizioni di flusso di energia costante.

$$1 \cdot Gy = \frac{1 \cdot J}{1 \cdot kg}$$

L'equivalente di dose H, in un punto di un tessuto, è il prodotto di Q e D dove D è la dose assorbita e Q è il fattore di qualità in quel punto, quindi H = Q • D (ICRU Report 51, 1993) ..

2.8.3 Il sievert è l'equivalente di dose in un elemento di tessuto della massa di 1 chilogrammo al quale è trasmessa l'energia di 1 joule tramite radiazioni ionizzanti e per il quale il valore del fattore di qualità, che pesi la dose assorbita per l'efficacia biologica delle particelle cariche che producono la dose assorbita, è 1. Il processo avviene in condizioni di flusso di energia costante

$$1 \cdot Sv = \frac{1 \cdot J}{1 \cdot kg}$$

Grandezza definita per l'attività catalitica

Grandezza	Unità		Espressione in	Definizione OIML D2
	Nome	Simbolo	altre unità SI	2007 (E)
Attività catalitica	katal	kat	1 kat = 1 mol s ⁻¹	2.6.2

2.6.2 Il **katal** è l'attività di un catalizzatore che causa un tasso di conversione catalitica di una mole di substrato al secondo. Si raccomanda che, quando il katal è utilizzato, il misurando sia specificato con riferimento alla procedura di misurazione. La procedura di misurazione deve identificare la reazione indicatrice (21^ CGPM, 1999).

$$1 \cdot kat = \frac{1 \cdot mol}{1 \cdot s}$$